Odder 14th of October 2016 Camilla Husted Vestergaard Flemming Gertz Plants & Environment

## WP 5 - TRENDS







# Instruments for measuring nitrate concentrations by hand

 $\square$ 

## **TWO PART STUDY**

Development of new concepts for an emission based regulation based on measurements of nitrate leaching from agricultural land

- Test of instruments in lab
  - Equipment
  - Results
  - Conclusions



- Measuring nitrate concentrations in drainage water
  - Need for measurements
  - Possibilities/limitations
  - Experiences
  - Perspectives
  - User guide



#### **TEST OF INSTRUMENTS IN THE LAB**



#### **METHOD FOR THE STUDY IN LAB**

- Calibration of instruments for those needed (standards for 1 mg NO3-N/I and 10 mg NO3-N/I)
- Test of instruments along a standard curve of milliQ (300 mM stock solution of KNO3)
- Test of instruments in drainage water sample (Matrix effect for max of 10% stock volume in sample)
- Comparison with a certified lab analysis of the sample

| NO3-N (mg/L) | 0   | 5    | 10   | 15   | 20   | 25   | 30   | 40   | 50   | 60   | 70   | 80   |
|--------------|-----|------|------|------|------|------|------|------|------|------|------|------|
| NO3-N (mM)   | 0   | 0,36 | 0,71 | 1,07 | 1,43 | 1,78 | 2,14 | 2,86 | 3,57 | 4,28 | 5,00 | 5,71 |
| V kolbe (ml) | 500 | 250  | 250  | 250  | 250  | 250  | 200  | 200  | 100  | 100  | 100  | 100  |
| V stock µl   | 0   | 297  | 595  | 892  | 1190 | 1487 | 1428 | 1094 | 1190 | 1428 | 1666 | 1904 |

Standards for 0-80 mg NO3-N/I



#### **INSTRUMENTS**

| Method         | Product          | Range (mg NO3 <sup>-</sup> -N L <sup>-1</sup> ) | Protocol   | Waist          |
|----------------|------------------|-------------------------------------------------|------------|----------------|
| Nitrate sensor | NeuLog NUL-241   | 0,1-14.000                                      | Appendix 1 | Non            |
| Nitrate sensor | YSI Professional | 0-200                                           | Appendix 2 | Non            |
|                | Plus             |                                                 |            |                |
| Nitrate sticks | AquaChek         | 0-50                                            | Appendix 3 | Nitrate sticks |
| Spectrofotomet | Spectroquant     | 0,3-30                                          | Appendix 4 | Cadmium        |
| ry             | Colorimeter      |                                                 |            |                |



#### **NEULOG SENSOR**

A.



SEGES

#### Sensor NeuLog

#### COLORIMETER

#### Spektrofotometer



SEGES

#### **YSI PROFESIONAL PLUS**



SEGES

#### **AQUACHEK STICS**

A LAND

| Measures | 0 | 5    | 10   | 15   | 20 | 25       | 30   | 40   | 50 |
|----------|---|------|------|------|----|----------|------|------|----|
| Serie 1  | 0 | 5    | 10   | 20   | 20 | 20 20 20 |      | 50   | 50 |
|          |   | down | up   | down | up | up       | Up   |      |    |
| Serie 2  | 0 | 5    | 10   | 20   | 20 | 50       | 50   | 50   | 50 |
|          |   | up   | up   | up   | up | down     | down | down |    |
| Serie 3  | 0 | 5    | 20   | 20   | 20 | 20       | 20   | 50   | 50 |
|          |   |      | down |      | up | up       | up   | down |    |

Overestimates in all intervals if not prober used Drain sample overestimated 1.2 times No test on matrix effect

#### **CONCLUSIONS ON LAB TEST**



#### **TEST OF INSTRUMENTS IN THE FIELD**



#### **LOCATIONS IN FENSHOLT**





#### METHOD FOR THE STUDY IN FIELD

Introduction  $\rightarrow$  testing  $\rightarrow$  evaluation

- Collaboration with farmers and agricultural advisor/LMO
- Selection of three instruments for consultant test and two for farmer test
- Instruction of using the instruments
- Measurement experience over a period of time
- Evaluation in the group (interview and observation)



#### **RESULTS FOR LASSE**



SEGES

#### **RESULTS FOR RASMUS**

The Case



SEGES

#### **CONCLUSIONS/PERSPECTIVES**

- Both instruments are usable for farmers and advisors for measuring nitrate concentrations in streams and drainage outlets
- Farmers do not find it necessary to have YSI sensor themselves but the strips will do
- The agricultural advisor sees perspectives in using both instruments as screening tools finding suitable areas for constructed wetlands
- The two instruments can both be used for that purpose when the concentration levels are sufficient when measured continually during winter discharge period
- Applications for smartphones might be a solution for more validated readings of the strips





#### WHAT IS NEXT

- Final evaluation in Holtum?
- Do we need to develop on automatic sampling?

Thank you all for your attention



#### **WP5 - EMISSION BASED REGULATION**

Hypothesis H: In collaboration with stakeholders, new concepts for emission based regulation can be developed that allows the inclusion of local scale data and observations in future national regulations.

|      |                                                                   |   | 20      | )15 |  |   | 201     | 16 |  |   | 201 | 17 |   |   | 8 |   |   |   |   |   |   |
|------|-------------------------------------------------------------------|---|---------|-----|--|---|---------|----|--|---|-----|----|---|---|---|---|---|---|---|---|---|
|      |                                                                   | 1 | 1 2 3 4 |     |  |   | 1 2 3 4 |    |  | 1 | 2   | 3  | 4 | 1 | 2 | 3 | 4 | 1 | 2 | 3 | 4 |
| 5    | Emission based regulation                                         |   |         |     |  |   |         |    |  |   |     |    |   |   |   |   |   |   |   |   |   |
| 5.1  | Catalogue of instruments to reduce nitrate load                   |   |         |     |  |   |         | >  |  |   |     |    |   |   |   |   |   |   |   |   |   |
| 5.2  | Monitoring concepts and techniques for emission based regulation  |   |         |     |  |   |         |    |  |   |     |    |   |   |   |   |   |   |   |   |   |
| 5.3  | Test passive sensors for in stream control monitoring             |   |         |     |  |   |         | _  |  |   |     |    |   |   |   |   |   |   |   |   |   |
| 5.4  | Stakeholder involvment in evaluation of emission based monitoring |   |         |     |  |   |         |    |  |   |     |    |   |   |   |   |   |   |   |   |   |
| D5.1 | Principles for emission based regulation (papers/guidance)        |   |         |     |  |   |         |    |  |   |     |    |   |   | ( | b |   |   |   |   |   |
| M5.1 | Monitoring concepts ready for test                                |   |         |     |  | м |         |    |  |   |     |    |   |   |   |   |   |   |   |   |   |



### 5.1 CATALOGUE OF INSTRUMENTS TO REDUCE NITRATE LOAD

the destroy about a survey as

- Current knowledge described
  - In sketches
  - In photos
  - In simple words



211

#### 5.2 MONITORING CONCEPTS AND TECHNIQUES FOR EMISSION BASED REGULATION

- Concept
- Techniques (Camilla)





ENVIRONMENTAL MEASURES ARE TO BE INITIATED "FROM THE BOTTOM" IN ORDER TO SUCCEED



#### **WP5 - EMISSION BASED REGULATION**

Hypothesis H: In collaboration with stakeholders, new concepts for emission based regulation can be developed that allows the inclusion of local scale data and observations in future national regulations.

|      |                                                                   |   | 20 | )15 |   |   | 2016 |   |   | 2017 |   |   |   | 2018 |   |   |   |
|------|-------------------------------------------------------------------|---|----|-----|---|---|------|---|---|------|---|---|---|------|---|---|---|
|      |                                                                   | 1 | 2  | 3   | 4 | 1 | 2    | 3 | 4 | 1    | 2 | 3 | 4 | 1    | 2 | 3 | 4 |
| 5    | Emission based regulation                                         |   |    |     |   |   |      |   |   |      |   |   |   |      |   |   |   |
| 5.1  | Catalogue of instruments to reduce nitrate load                   |   |    |     |   |   |      | > |   |      |   |   |   |      |   |   |   |
| 5.2  | Monitoring concepts and techniques for emission based regulation  |   |    |     |   |   |      |   |   |      |   |   |   |      |   |   |   |
| 5.3  | Test passive sensors for in stream control monitoring             |   |    |     |   |   |      | _ |   |      |   |   |   |      |   |   |   |
| 5.4  | Stakeholder involvment in evaluation of emission based monitoring |   |    |     |   |   |      |   |   |      |   |   |   |      |   |   |   |
| D5.1 | Principles for emission based regulation (papers/guidance)        |   |    |     |   |   |      |   |   |      |   |   |   |      | ( | b |   |
| M5.1 | Monitoring concepts ready for test                                |   |    |     |   | м |      |   |   |      |   |   |   |      |   |   |   |

